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Abstract. Starting with a collection of traces generated by process executions,
process discovery is the task of constructing a simple model that describes the
process, where simplicity is often measured in terms of model size. The challenge
of process discovery is that the process of interest is unknown, and that while the
input traces constitute positive examples of process executions, no negative exam-
ples are available. Many commercial tools discover Directly-Follows Graphs, in
which nodes represent the observable actions of the process, and directed arcs in-
dicate execution order possibilities over the actions. We propose a new approach
for discovering sound Directly-Follows Graphs that is grounded in grammatical
inference over the input traces. To promote the discovery of small graphs that
also describe the process accurately we design and evaluate a genetic algorithm
that supports the convergence of the inference parameters to the areas that lead
to the discovery of interesting models. Experiments over real-world datasets con-
firm that our new approach can construct smaller models that represent the input
traces and their frequencies more accurately than the state-of-the-art technique.
Reasoning over the frequencies of encoded traces also becomes possible, due to
the stochastic semantics of the action graphs we propose, which, for the first time,
are interpreted as models that describe the stochastic languages of action traces.
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1 Introduction

Process mining is a discipline that studies data-driven methods and techniques to an-
alyze and optimize processes by leveraging the event data extracted from information
systems during process execution. Process mining approaches can uncover inefficien-
cies, bottlenecks, and deviations within processes, empowering analysts to make well-
informed decisions and formulate hypotheses about future processes [3].

A fundamental problem studied in process mining is process discovery, which in-
volves constructing process models from event data [3]. The discovered models aim to
describe the process that generated the data and can vary in detail and accuracy. The
event data used as input often takes the form of an event log, a collection of traces, each
captured as a sequence of executed actions in a single instance of the process. As the
same sequence of actions can be executed multiple times by the process, an event log
can contain multiple instances of the same trace.
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A plethora of discovery techniques have been proposed, employing a range of op-
tions to represent the constructed models. Among these languages, Directly-Follows
Graphs (DFGs) stand out for their intuitiveness, and are a preferred choice for practi-
tioners seeking insights [4,24,13]. A DFG is a directed graph in which nodes denote
actions and arcs encode “can follow” relations between them. The nodes and arcs of a
DFG are annotated with numbers reflecting the frequencies of the actions and “occurs
next” dependencies inferred from the data.

In this paper, we present an approach grounded in stochastic grammar inference for
constructing a Stochastic Directed Action Graph (SDAG), a special type of DFG de-
fined to capture the likelihood of traces, from an event log. The problem of stochastic
grammar inference from a language consists of learning a grammar representing the
strings of the language and their probabilities, which indicate their importance in the
language [17]. Hence, discovering a process model from an event log is akin to grammar
inference, where traces of actions in the event log can be seen as words in the language
strings. There are several reasons why one might choose to use stochastic inference for
process discovery. First, noisy traces are, in general, infrequent and can thus be iden-
tified and suppressed during inference, noting that noise is intrinsic to event data and
poses challenges to discovery [14]. Second, stochastic grammars can be used to predict
the next trace or deduce the probability of the next action given an observed sequence
of actions, information which can inform process simulations [26], decision-making
by analysts [2], and future process design [3]. Third, grammar inference is performed
based on positive example strings, aiming to: (i) learn the input examples; (ii) favor
simpler explanations of the strings, known as Occam’s razor or the parsimony princi-
ple; and to (iii) generalize to all positive examples of the target unknown language [17].
These aims naturally coincide with the goals of process discovery to construct models
that: (i) are fitting and precise; (ii) simple; and that (iii) generalize to all of the traces
the (unknown) process can support [10].

We use ALERGIA to perform stochastic grammar inference. ALERGIA identi-
fies any stochastic regular language from positive example strings in the limit with
probability one [12], with a runtime bounded by a cubic polynomial in the number of
input strings. In practice the runtime grows only linearly with the size of the sample
set [12,17]. When performing process discovery, to support process exploration at dif-
ferent abstraction levels [29], one is often interested in creating a range of models of
various sizes. In general, the problem of determining whether there is a representation
of a language of a given size is NP-complete [15]. To control the level of detail in the
models it constructs, ALERGIA makes use of two parameters. A key contribution in
this paper is a genetic algorithm that evolves an initial random population toward pa-
rameter pairs that result in better models. Even though SDAGs (unlike DFGs) can have
multiple nodes that refer to the same action, we were able to discover SDAGs that are
both smaller than the DFGs constructed by a state-of-the-art discovery algorithm and
also yield more faithful encodings.

Specifically, we contribute:
1. The first formal semantics of SDAGs (and DFGs) grounded in stochastic languages;
2. A Genetic Algorithm for Stochastic Process Discovery (GASPD) that discovers a

family of SDAGs from an input event log;
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3. A heuristic for focusing genetic mutations to areas likely to accelerate convergence,
resulting in SDAGs of superior quality; and

4. An evaluation of GASPD over real-life event logs that both demonstrates its benefits
and also suggests future improvements.

The remainder of this paper is structured as follows. The next section discusses related
work. Section 3 introduces basic notions required to understand the subsequent sec-
tions. Then, Section 4 presents SDAGs and their formal semantics. Section 5 proposes
our approach for discovering SDAGs from event logs, while Section 6 discusses the
results of an evaluation of this approach over real-world datasets using our open-source
implementation. The paper concludes with final remarks and discussions in Section 7.

2 Related Work

ALERGIA , introduced by Carrasco and Oncina [12], and its variant, Minimum Diver-
gence Inference (MDI) by Thollard et al. [32], are state-merging algorithms for learning
stochastic deterministic finite automata (SDFA) from positive examples. MDI extends
ALERGIA with different heuristics and compatibility tests during state merging. Stol-
cke and Omohundro [31] proposed Bayesian Model Merging (BMM), which deduces
a model through structure merging guided by posterior probabilities.

Work by Herbst [16], inspired by BMM , was the first application of grammati-
cal inference for stochastic process discovery. The approach consists of two routines:
model merging and model splitting. The former generalizes the most specific model by
merging processes, using log-likelihood as a heuristic, while the latter refines a general
model through iterative splits. The resulting models are then converted to ADONIS,
permitting concurrent behavior.

Recent research in stochastic process mining resulted in several advancements.
Rogge-Solti et al. [30] proposed a technique that lays stochastic performance data over
given non-stochastic Petri nets. Improvements of the algorithm by Burke et al. [11]
introduce five methods to estimate transition probabilities in Petri nets. An approach
developed by Mannhardt et al. [25] discovers data dependencies between Petri net
transitions, and Leemans et al. [22] extend the approach to capture stochastic long-
dependencies triggered by the earlier actions in processes. To assess the quality of
stochastic process models, several quantification techniques have been developed us-
ing the Earth Mover’s Distance [19], entropy-based conformance checking [23], and
the Minimum Description Length principle [28,6].

Directly-Follows Graphs emerged as an alternative modeling notation to determin-
istic automata. van der Aalst et al. [5] laid the foundation for process discovery by
defining the directly-follows relation within a workflow, capturing the inherent depen-
dencies among activities. Algorithms like α-Miner [5], Flexible Heuristics Miner [33],
and Fodina [9] discover and map these relations onto Petri nets or BPMN models.

Directly-Follows visual Miner (DFvM) discovers DFGs, aiming to visually repre-
sent the direct dependencies between actions in the input log. Designed by Leemans
et al. [24], DFvM also filters out less frequent relations, focusing on significant and
regular behaviors. DFvM consistently constructs high-quality small-sized models com-
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parable to models produced by top software vendors in the field [28], and is the method
we use as a baseline in the experiments described in Section 6.

Chapela-Campa et al. [13] proposed a Directly-Follows Graphs filter technique to
enhance the understandability of DFGs. The technique formulates the simplification
task as an optimization problem, aiming to identify a sound spanning subgraph that
minimizes the number of edges while maximizing the sum of edge frequencies.

Widely recognized algorithms like Inductive Miner (IM) by Leemans et al. [20] and
Split Miner (SM) by Augusto et al. [7] discover DFGs as an intermediate step, map-
ping them to well-defined modeling notations. IM discovers block-structured workflow
nets using process trees by computing log cuts based on identified dominant operators
such as exclusive choice, sequence, parallel, and loop within the directly-follows graph.
Building upon this approach, Inductive Miner-directly follows (IMd ) [21] handles scal-
ability by employing a single-pass directly-follows graph approach for incomplete logs,
and those with infrequent behavior. SM transforms logs into graphical Directly-Follows
Graphs. The algorithm detects concurrency, prunes the graph, and models it in BPMN,
balancing precision and fitness and keeping the model complexity low.

The adaptive metaheuristic framework [8] optimizes the accuracy of DFG-based
process discovery using three strategies that guide exploring the solution space of dis-
coverable DFGs. The framework iteratively refines DFGs through metaheuristics, eval-
uates their performance using an objective function, and selects optimal process models.

3 Preliminaries

An SDFA is a representation of the traces of a process and their likelihoods.

Definition 3.1 (Stochastic deterministic finite automata)
A stochastic deterministic finite automaton (SDFA) is a tuple (S , Λ, δ, p, s0), where S is
a finite set of states, Λ is a finite set of actions, δ : S × Λ→ S is a transition function,
p : S × Λ→ [0, 1] is a transition probability function, and s0 ∈ S is the initial state,
such that ∀ s ∈ S : (

∑
λ∈Λ p (s, λ) ≤ 1.0). ⌟

A trace is a sequence t ∈ Λ∗. We use ϵ to denote the empty trace. Given two traces
t1 and t2, their concatenation t1 ◦ t2 is obtained by joining t1 and t2 consecutively; for
example ϵ ◦ ϵ = ϵ, ϵ ◦ ⟨b,b⟩ = ⟨b,b⟩, and ⟨b,b⟩ ◦ ⟨b,d⟩ = ⟨b,b,b,d⟩.

An SDFA A = (S ,Λ,δ,p,s0) encodes stochastic language LA defined using recursive
function πA : S × Λ∗ → [0, 1], that is, LA (t) = πA (s0, t), t ∈ Λ∗, where:

πA (s, ϵ) := 1.0 −
∑
λ∈Λ

p (s, λ), and

πA
(
s, λ ◦ t′

)
:= p (s, λ) πA

(
δ (s, λ), t′

)
, λ ∈ Λ, t = λ ◦ t′.

Note that πA (s, ϵ) denotes the probability of terminating a trace in state s ∈ S . It holds
that
∑

t∈Λ∗ LA (t) = 1.0. Figure 1 shows an example SDFA in which LA (⟨a,c,e,c⟩) =
0.664, LA (⟨a,b,c,e⟩) ≈ 0.028, and LA (⟨b,b,b,d⟩) = 0. The probability associated with
a trace is an indication of its importance in the language.1

1 A common mistake is to confuse this with the probability of the trace being in the language.
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An event log L is a finite multiset of traces, where each trace encodes a sequence of
observed and recorded actions executed in the corresponding process. The multiplicity
of t in L, denoted by n (t,L), indicates how frequently it has been observed and recorded;
we thus have |L| =

∑
t∈L n (t,L). The empirical finite support distribution associated with

L, denoted as PL , is given by PL (t) = n (t,L)/|L|. For example, suppose that L = [⟨a,
c, e, c⟩1057, ⟨a, b, c, e⟩272, ⟨b, b, b, d⟩164] is an event log. It holds that |L| = 1493,
PL (⟨a,c,e,c⟩) ≈ 0.708, PL (⟨a,b,c,e⟩) ≈ 0.182, and PL (⟨b,b,b,d⟩) ≈ 0.110.

Entropic relevance relies on the minimum description length principle to measure
the number of bits required to compress a trace in an event log using the structure and
information about the relative likelihoods of traces described in a model, for instance,
an SDFA [6]. Models with lower relevance values to a given log are preferred because
they describe the traces and their likelihoods better. For example, the entropic relevance
of SDFA A from Figure 1 to event log L is 3.275 bits per trace.2

4 Stochastic Directed Action Graphs

We now describe SDAGs, their stochastic semantics, and their relationship to DFGs.

Definition 4.1 (Stochastic directed action graphs) A stochastic directed action graph
(SDAG) is a tuple (N, Λ, β, γ, q, i, o), where N is a finite set of nodes, Λ is a finite set of
actions, β : N → Λ is a labeling function, γ ⊆ (N ×N)∪ ({i} ×N)∪ (N × {o}) is the flow
relation, q : γ → [0, 1] is a flow probability function, and i < N and o < N are the input
node and the output node, such that ∀ n ∈ N ∪ {i} : (

∑
m∈{k∈N∪{o} | (n,k)∈γ} q (n,m) = 1). ⌟

An execution of an SDAG is a finite sequence of its nodes beginning with i and ending
with o, such that for every two consecutive nodes x and y in the sequence there is an arc
(x, y) ∈ γ. A trace of an SDAG is a sequence of actions such that there is an execution
that confirms the trace in which the nodes, excluding the input and output nodes, are
the actions of the trace in the order they appear. Figure 3 shows example SDAG G. The
sequence of nodes ⟨i,n1,n3,n5,n4,o⟩ is an execution of G that confirms trace ⟨a,c,e,c⟩.

An SDAG G encodes stochastic language LG such that for a trace t of G it holds
that LG (t) is equal to the sum of probabilities of all the executions of G that confirm
t, where the probability of an execution is equal to the product of the probabilities, as
per function q, of all the arcs, as per γ, defined by all pairs of consecutive nodes in the
execution. In addition, if t ∈ Λ∗ is not a trace of G, it holds that LG (t) = 0.

2 We use the uniform background coding model throughout this work [6].
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Given an SDFA, one can obtain its corresponding SDAG.

Definition 4.2 (SDAG of SDFA)
Let A be an SDFA (S ,Λ,δ,p,s0). Then, (N,Λ,β,γ,q,i,o), where it holds that:
– N = δ, i < N, o < N,
– β = {((x,λ,y), λ) | (x,λ,y) ∈ δ},
– q = {((x,λ1,y),(y,λ2,z),p (y,λ2)) | (x,λ1,y) ∈ δ ∧ (y,λ2,z) ∈ δ} ∪

{(i,(s0,λ,y),p (s0,λ)) | (s0,λ,y) ∈ δ} ∪
{((x,λ,y),o,1.0 −

∑
µ∈Λ p (y,µ)) | (x,λ,y) ∈ δ ∧

∑
µ∈Λ p (y, µ) < 1.0} ∪

{(i,o,1.0 −
∑
µ∈Λ p (s0,µ)) |

∑
µ∈Λ p (s0, µ) < 1.0}, and

– γ = {(x, y) | (x,y,z) ∈ q ∧ z ∈ [0, 1]},
is the SDAG of A, denoted by SDAG (A). ⌟

If A is an SDFA, then SDAG (A) is sound [1] by construction, as every node of SDAG (A)
is on a directed walk from the input node to the output node while the directed walks in
SDAG (A) define all and only its executions. Hence, one can reach the output node from
every node of SDAG (A) (option to complete property), once a directed walk, and thus
the corresponding execution, reaches the output node, it completes (proper completion),
and the output node is the only deadlock in SDAG (A) (no dead actions).

In addition, an SDAG of an SDFA has a special structure; that is, it is deterministic.

Definition 4.3 (Deterministic SDAGs) An SDAG (N, Λ, β, γ, q, i, o) is deterministic
if and only if for every two arcs that start at the same node and lead to two distinct
nodes it holds that the labels of the nodes are different, that is, it holds that: ∀ n ∈
N ∪ {i} ∀ n1, n2 ∈ N : (((n, n1) ∈ γ ∧ (n, n2) ∈ γ ∧ n1 , n2)⇒ β (n1) , β (n2)). ⌟

In a deterministic SDAG, every distinct arc originating at a node must lead to a node
with a different action. Consequently, every trace of a deterministic SDAG has only one
execution that confirms it, significantly simplifying the computation of the stochastic
language of the action graph. The SDAG of an SDFA is deterministic.

Lemma 4.1 (Deterministic SDAGs) If A is a SDFA then SDAG (A) is deterministic. ⌟
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Lemma 4.1 holds by construction of Definition 4.2. The SDAG G from Figure 3 is an
SDAG of SDFA A in Figure 1, i.e., it holds that G = SDAG (A). As G is deterministic,
it holds that LG (⟨a,c,e,c⟩) = 0.664, which is equal to the product of the probabilities
on all the arcs of the corresponding execution ⟨i,n1,n3,n5,n4,o⟩.

Definition 4.4 (SFA of SDAG) Let G be an SDAG (N, Λ, β, γ, q, i, o). Then, (S , Λ, δ, p,
s0), where it holds that S = N ∪ {i}, δ = {(x, λ, y) ∈ (N ∪ {i}) × Λ × N | (x, y) ∈ γ ∧ λ =
β (y)}, p = {(x, λ,

∑
β(y)=λ,y∈N q (x,y)) | x ∈ N ∪ {i} ∧ λ ∈ Λ ∧ ∃ z ∈ N : (x, λ, z) ∈ δ}, and

so = i, is the stochastic finite automaton (SFA) of G, denoted by SFA (G). ⌟

Definition 4.4 generalizes Definition III.5 from [28] to account for the fact that an
SDAG can have multiple nodes that refer to the same action.

Note that SFA (G) is indeed an SDFA if G is deterministic.

Lemma 4.2 (Determinism) If G is a deterministic SDAG then SFA (G) is an SDFA. ⌟

Lemma 4.2 holds by construction of Definition 4.4. The SDAG of an SDFA and the
SDFA of a deterministic SDAG have the same stochastic languages.

Lemma 4.3 (Equivalence) Let A be an SDFA and let G be an SDAG.
Then, it holds that (i) LA = LSDAG(A), and (ii) LG = LSFA(G). ⌟

The stochastic language of the SDFA of a deterministic SDAG defines the stochastic
semantics of the SDAG. In turn, the stochastic semantics of the SDAG of an SDFA is
specified by the stochastic language of the SDFA.

In a DFG discovered by a conventional discovery technique, every action has only
a single corresponding node. Every SDAG with a pair of distinct nodes that refer to the
same action λ can be transformed to an SDAG in which those two nodes are removed,
a fresh node for λ is added, all the incoming (outgoing) arcs of the removed nodes get
rerouted to reach (originate at) the fresh node, and the probabilities on the outgoing arcs
of the fresh node are normalized. Repeated application of this transformation until no
further reductions are feasible yields an SDAG that is a DFG.3 It is straightforward to
show that different maximal sequences of feasible transformations do indeed lead to the
same resulting DFG. Figure 4 shows the DFG G′ obtained in this way from SDAG G
in Figure 3; we denote this relationship between the graphs by G′ = DFG (G).

An SDAG can be annotated with frequencies of actions and flows, thereby providing
information on the rate at which the corresponding concepts arise in the event log from
which the SDAG was constructed. Given a number n of cases that should “flow” through
the graph, frequencies can be derived from the probabilities by solving a system of
equations comprising two types. Each node of the graph defines a conservation equation
that requires that the sum of frequencies on the incoming arcs equal the sum of the
frequencies on the outgoing arcs, except for the input (output) node, for which the sum
of frequencies on the outgoing (incoming) arcs is equal to n. Finally, each arc emanating
from a node s defines an arc equation that specifies that the frequency of the arc is
equal to its probability times the sum of frequencies of all the incoming arcs of s. Such

3 Noting that in a DFG nodes and arcs are annotated with occurrence frequencies.
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Table 1: A system of equations used to obtain frequencies of nodes and arcs in Figure 4.

Node Equation

i 1493.0 = f (i, n1)
n1 f (i, n1) = f (n1, n2) + f (n1, n3)
n2 f (n1, n2) = f (n2, n3)
n3 f (n1, n3) + f (n2, n3) + f (n5, n3) = f (n3, o) + f (n3, n5)
n5 f (n3, n5) = f (n5, n3) + f (n5, o)
o f (n3, o) + f (n5, o) = 1493.0

Arc Equation

γ (n1, n2) 0.17 f (i, n1) = f (n1, n2)
γ (n1, n3) 0.83 f (i, n1) = f (n1, n3)
γ (n2, n2) 0.17 (f (n1, n2) + f (n2, n2)) = f (n2, n2)
γ (n2, n3) 0.83 (f (n1, n2) + f (n2, n2)) = f (n2, n3)
γ (n3, n5) 0.50 (f (n1, n3) + f (n2, n3) + f (n5, n3)) = f (n3, n5)
γ (n3, o) 0.50 (f (n1, n3) + f (n2, n3) + f (n5, n3)) = f (n3, o)
γ (n5, n3) 0.80 f (n3, n5) = f (n5, n3)
γ (n5, o) 0.20 f (n3, n5) = f (n5, o)

a system of equations always has a solution as it contains one unknown per arc and at
least as many equations as arcs.

The annotations in Figures 3 and 4 show frequencies for nodes and arcs, obtained
from the probabilities by following that process. For instance, the annotations in Fig-
ure 4 were obtained by solving the fourteen simultaneous equations in Table 1.4 Notice
that in the figures, all frequencies are rounded to one decimal place. The frequency of a
node is derived as the sum of the frequencies of all its incoming (or outgoing) arcs.

The SDAG in Figure 3 is of size 16 and has an entropic relevance of 3.267 bits per
trace relative to the example event log L from Section 3, with the small difference with
the relevance of the SDFA in Figure 1 due to the integer frequencies used in the SDAG.
The DFG in Figure 5 constructed from the same log using the DFvM algorithm [24]
has size 19 and an entropic relevance to L of 4.168. That is, the SDAG is smaller and
also describes the event log more faithfully than the DFG. Nor does varying the DFvM
filtering threshold in steps of 0.01 from zero to 1.0 find any outcomes that alter that
relativity: 70 of those 100 generated DFGs have a size of 10 and relevance of 6.062; 19
DFGs are of size 14 and relevance of 4.804; and the remaining 11 DFGs (as in Figure 5)
have size of 19 and relevance of 4.168. Finally, the relevance of the SDAG in Figure 4
to L is 4.865 bits per trace, illustrating the desirability of permitting duplicate action
nodes in the discovered models.

5 Stochastic Process Discovery

Our approach to discovering stochastic process models consists of two fundamental
components: a grammar inference algorithm coupled with a genetic optimization mech-
anism. We build on ALERGIA to construct representations of stochastic language mod-
els encoded in the given event data. Complementing that model discovery, we employ
Multi-Objective Genetic Search to fine-tune the parameters associated with the learning
process. This section explains these two fundamental components.

ALERGIA , an instantiation of the Red-Blue algorithm, is introduced by Carrasco
and Oncina [12] for learning SDFAs from a multiset of strings. The algorithm starts
by constructing a Prefix Acceptor Tree (PAT) from the multiset of traces, with nodes
representing prefixes of traces and edges indicating transitions between the nodes. Each
edge is labeled with the frequency of the corresponding trace prefix in the input log.
ALERGIA then generalizes and compacts that PAT by merging states that exhibit sim-
ilar behavior. The merging aims to identify sets of states with similar probabilistic dis-

4 In which f (x, y) is the frequency of arc (x, y) ∈ γ.
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tributions of outgoing edges, and consolidates each such set into a single state, thereby
seeking to create a more concise representation of the underlying language of the model.

Two subsets of nodes are maintained while the compaction process is carried out.
The Red set initially contains only the root of the prefix tree, while the Blue set contains
all direct successors of the Red set. At each cycle of operation, ALERGIA iteratively
selects a state from the Blue set, taking into account a threshold parameter t that de-
termines the minimum number of strings necessary for a state to be considered for
merging. Compatibility for merging is determined by comparing final-state frequencies
and outgoing transitions of states in the Red and Blue sets.

Hoeffding’s inequality [18] is a statistical test that bounds the extent to which the
mean of a set of observations can deviate from its expected value. This inequality can
be used to test if an observed outcome g significantly deviates from a probability value
p given a confidence level α and n observations:∣∣∣∣∣p − g

n

∣∣∣∣∣ <
√

1
2n

log
2
α
. (1)

ALERGIA approximates that inequality to compare the observed frequencies of pairs
of states drawn from the Red and Blue sets, taking into account final-state frequencies
and the frequencies of outgoing transitions:∣∣∣∣∣g1

n1
−

g2

n2

∣∣∣∣∣ < ω · 
√

1
n1
+

√
1
n2

 . (2)

In Equation (2), n1 and n2 are the frequencies of arriving sequences at the compared
states, and g1 and g2 are the frequencies of ending sequences at those states. This Ho-
effding bound assesses the significance of the difference between the two estimates.
It ensures that the difference in frequencies is within a statistically acceptable range,
as determined by the value of ω. If the observed frequencies fall within the permitted
range, the states are deemed compatible, and ALERGIA merges them. Conversely, if
the observed differences exceed the bounds, the states are considered incompatible, and
the algorithm preserves that difference by converting the Blue member of the pair to
Red. These compatibility checks are not limited to the states but also extend to their
respective successors in the tree structure. To merge states, the algorithm redirects tran-
sitions and folds subtrees rooted at an identified Blue state onto the outgoing edges of
the corresponding Red state. Based on the merged transitions, the automaton is then
updated, with the process iterated until no more mergings can be identified.

As a pre-processing step, we employ a simple filtering technique that selectively re-
tains a certain percentage, as a predefined threshold f , of the most frequent traces from
the event log. This filtering reduces the complexity of the discovered model, particu-
larly in scenarios where noise and infrequent traces might detract from the overall view
of the process. Varying the filtering threshold f also allows altering the level of detail
preserved in the log, allowing alignment with specific analytical goals.

Algorithm 1 provides an overview of ALERGIA . The FILTER function, called at
line 1, filters the input log based on the supplied threshold. The filtered log is then used
to construct PAT T , refer to line 2. Figure 2 shows the prefix tree constructed from ex-
ample log L from Section 3 after applying the filtering using the threshold of f = 0.89.
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Algorithm 1: ALERGIA
Data: A multiset of traces L, parameters ω > 0, t > 0, and f ∈ [0, 1]
Result: An SDFA A

1 L′ ← FILTER(L, f );
2 T ← PAT(L′);
3 Red← {q0};
4 Blue← {δ(q0, a) : ∀a ∈ Σ};
5 while ∃qb ∈ Blue : FREQ(qb) ≥ t do
6 if ∃qr ∈ Red : COMPATIBLE(qr, qb, ω) then
7 A ← MERGE(qr, qb);
8 A ← FOLD(qr, qb);

9 else
10 Red← Red ∪ {qb};
11 Blue← (Blue − {qb}) ∪ {δ(qb, a) : a ∈ Σ and δ(qb, a) < Red};

12 A ← CONVERT(T );
13 return A;

Algorithm 2: GASPD
Data: Initial population size n, number of generations GenLim, and

number of parents k to generate offspring
Result: A Pareto frontier F, captured as a set of parameter triples

1 g← 0;
2 P← POPULATION(n);
3 while g < GenLim do
4 F ← SELECT(P);
5 U ← CROSSOVER-MUTATION(F, k);
6 P← REPLACE-ELITE(U, F);
7 g← g + 1;

8 return F;

At line 5, the FREQ function computes the frequency of arriving at state qb to check
if the state is reached sufficiently frequently, as per the threshold t. The compatibility
test between states qr and qb is performed by the COMPATIBLE function at line 6.
The MERGE function is then called at line 7 to merge two states and, subsequently,
the FOLD function folds the tree. Finally, the CONVERT function maps T to its cor-
responding automaton A. For a detailed description of the algorithm, refer to [12]. The
SDFA A in Figure 1 is discovered from the example event log by ALERGIA using
parameters ω = 1, t = 1, and f = 0.89.

The initialization phase sets the foundation for the genetic algorithm. At line 2 of Al-
gorithm 2, the POPULATION function creates a population of n seed solutions P = {p1,
p2, . . . , pn}, where pi = (ωi, ti, fi), i ∈ [1 .. n], is a parameter triple. The values of these
parameters are independently and randomly generated within specified bounds, with
each triple determining a model using Algorithm 1. A large initial population enhances
exploration but increases the computational cost. Conversely, a small initial population
is computationally more efficient but may compromise the ability to find good solutions.
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The quality of each solution pi is then assessed to determine how well it performs
with respect to the objective functions. In Algorithm 2, this is done in function SELECT
at line 4, which applies ALERGIA to obtain a process model as a function of each
parameter triple in the current population P. This gives rise to a set of models, where
each model has an associated size and an entropic relevance score computed using
Entropia [27]. The selection of relevance as a quality metric stems from its ability to
rapidly score models, a feature that harmonizes effectively with the genetic framework.

As part of each selection phase, the individuals from the current population that
form the Pareto frontier F are identified, noting the individuals that are not dominated
by other solutions in terms of the two objectives, with Pareto efficient points leading to
models having small size and entropic relevance. Each such point represents a unique
trade-off between the objectives, providing decision-makers with a set of alternative op-
tions. One such frontier is associated with each generation, with the generations counted
in Algorithm 2 by the variable g. While we use ALERGIA , size, and entropic relevance,
the GASPD procedure is not tied to a specific discovery algorithm or quality measure.

In function CROSSOVER-MUTATION at line 5 of Algorithm 2, each generation
is constructed from the previous one by applying crossover and mutation operations
to create a set of offspring, new individuals that (with luck) inherit beneficial traits
from previous generations. The crossover operation mimics natural genetic recombina-
tion, combining information from selected parents, with both single- and double-point
crossover techniques employed in our approach. Specifically, to produce offspring, two
parents (ω1, t1, f1) and (ω2, t2, f2) are selected from frontier F. In the single-point
crossover, one crossover position in the parent triples is selected. Then, the parameters
at and to the left of the crossover point in both parents remain unchanged, while the
parameters to the right of the crossover point are swapped between the parents. Hence,
six offspring are produced, namely (ω1, t2, f2) and (ω2, t1, f1) at position one, (ω1,
t1, f2) and (ω2, t2, f1) at position two, and (ω1, t1, f1) and (ω2, t2, f2) at position
three. In the double-point crossover, two additional offspring (ω1, t2, f1) and (ω2,
t1, f2) are produced by swapping parameters of the parents twice, once after the first
crossover point and then after the second crossover point. GASPD includes all such
offspring stemming from all pairs in k randomly selected parents from front F (or |F|
selected parents, if |F| < k) when generating the set of offspring U.

The mutation component of the CROSSOVER-MUTATION function then alters the
“genetic makeup” of new individuals in U by randomly modifying their three defining
parameters, restricted to certain predefined bounds. The random nature of these mu-
tations ensures that the algorithm does not converge prematurely to a limited subset of
solutions and allows for the exploration of a broader range of possibilities, crucial when
the global optimum may not be immediately apparent. For each individual (ω, t, f ) in
U, its mutated twin defined as (ω+ ∆ω,t + ∆t, f + ∆ f ), where ∆ω, ∆t, and ∆ f are random
positive or negative mutation values within specified bounds, is created and added to U.

Our approach here (implemented in the REPLACE-ELITE function at line 6 of Al-
gorithm 2) is that each generation retains the items that were on the Pareto frontier of
any previous generation, and then adds any new parameter triples that establish new
points on the frontier. That is, we always preserve solutions that, at some stage, have
appeared promising, and seek to add any new solutions that outperform them.
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The SDFAs constructed by ALERGIA using the parameters discovered by GASPD
can be translated to sound SDAGs using the principles laid out in Definition 4.2.

6 Evaluation

We have implemented GASPD5 and conducted experiments using twelve publicly avail-
able real-world event logs shared by the IEEE Task Force on Process Mining6, derived
from IT systems executing business processes. These experiments assess the feasibil-
ity of using GASPD in industrial settings, and compare the quality of its models with
the ones constructed by DFvM [24]. A wide range of DFvM filtering parameters were
considered, establishing a reference curve for each log showing the versatility of DFvM
across the spectrum of possible model sizes. We also explored the effectiveness of the
genetic search in guiding the selection of parameters to identify desirable solutions.

For each of the twelve event logs GASPD was seeded with an initial population of
50 parameter triples, each containing random values for ω (from 0 to 15); for t (from 0
to the most frequent PAT branch); and for f (from 0 to 1). The genetic search was then
iterated for 50 generations, with mutation achieved by random adjustments to parameter
values within the same defined ranges.

Figures 6a to 6c show model relevance scores as a function of model size, taking
three snapshots during the course of GASPD when executed on the BPIC17 log. After
one generation the models are a mixed bag, a result of the random starting point; but
with broad coverage of the search space achieved, and already with individuals (yel-
low dots) identified that outperform the baseline set by the red DFvM frontier. By the
tenth generation, mutation and breeding have taken the population toward improved
performance, with many solutions now below the previous frontier, and convergence
towards promising regions in the parameter space. Then, by generation 50, the situation
has stabilized, with additional individuals identified that lead to attractive models that
outperform the DFvM frontier used here as a reference.

Figure 7 shows GASPD performance at the 50 generation point for three other logs.
In each case GASPD constructs models that outperform the DFvM ones over at least
some fraction of the range of sizes being considered, noting that smaller and more
accurate models are preferable for human analysis. Table 2 then summarizes GASPD
when applied to all twelve event logs, further supporting our contention that GASPD
finds useful new models. In the first seven rows we focus on human-scale models of up
to 100 nodes/edges, and then relax that to a limit of size 1000 for the BPIC15 tasks,
which tend to give rise to more complex models. As can be seen, in ten of the twelve
cases GASPD generates models of better relevance for at least part of the size range,
with DFvM tending to discover models of better relevance for large sizes. In future
work, it would be interesting to study if grammar inference techniques can be useful in
discovering large, accurate models.

As already described, GASPD employs evolutionary search as part of the discovery
algorithm. To focus the search onto good candidates, the individuals in each generation
P are split into two classes: “good”, and “bad”. An individual is “good” if it has been

5 https://github.com/jbpt/codebase/tree/master/jbpt-pm/gaspd
6 https://www.tf-pm.org/resources/logs

https://github.com/jbpt/codebase/tree/master/jbpt-pm/gaspd
https://www.tf-pm.org/resources/logs
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Fig. 6: Size and relevance of SDAG models discovered by GASPD from the BPIC17 log.
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Fig. 7: Size and relevance of SDAG models discovered by GASPD after 50 generations.

Table 2: Relative performance of SDAG models discovered by GASPD after 50 generations,
including the size range of interest, the size interval(s) of GASPD superiority, min/max size, and
min/max relevance.

Size interval Size interval of Size within interval Entropic relevance
Event log From To superior performance Min Max Min Max

Sepsis 0 100 (0 .. 53) 13 77 45.16 63.10
BPIC12 0 100 [13 .. 44) ∪ [48 .. 100] 13 77 36.39 81.84
BPIC17 0 100 (0 .. 25) ∪ [34 .. 62) 20 95 60.56 161.25
RTFM 0 100 [53 .. 100] 13 69 2.71 9.07
BPIC13OP 0 100 [4 .. 6) ∪ [8 .. 9) 3 80 5.06 7.80
BPIC13CP 0 100 (0 .. 9) 4 79 6.26 9.78
BPIC13I 0 100 (0 .. 12) 4 89 12.33 17.10
BPIC15-1 0 1000 [37 .. 44) ∪ [59 .. 122) 37 633 380.01 384.21
BPIC15-2 0 1000 [473 .. 641) ∪ [697 .. 965) 149 946 428.00 469.94
BPIC15-3 0 1000 (0 .. 27) ∪ [95 .. 103) 11 958 298.01 370.63
BPIC15-4 0 1000 ∅ 475 475 386.93 386.93
BPIC15-5 0 1000 ∅ 695 695 445.41 445.41

on the Pareto frontier in any previous generation; and it is “bad” if has never been part
of any Pareto frontier. In Algorithm 2 each generation is derived solely from the “good”
individuals of the previous population, with the aim of iterating towards better solutions.
Only new individuals that are also “good” are then retained into the next population.

To verify the usefulness of that heuristic, we also experimented with breeding from
“bad” parents, recording at each generation the fractions of “good” offspring from pairs
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Fig. 8: The fraction of “good” individuals arising as offspring from pairs of “good” parents and
pairs of “bad” parents, traced through 50 generations, for each of four logs.

of “bad” parents, and then likewise the fraction arising from pairs of “good” parents.
Figure 8 shows the result, with the four dotted lines at the top the “good parents” success
rate, and the four solid lower lines the “bad parents” rate. As can be seen, the four
dotted lines comprehensively outperform their solid equivalents, and good parents are
much more likely to lead to interesting offspring than are bad parents. Taking a paired
t-test between the 50 “dotted” points and the 50 “solid” points for the four logs gives
p < 10−10 in all four cases, confirming that filtering the population at each generation
to only contain good parents is a highly beneficial strategy.

7 Discussion and Conclusion

We have presented GASPD, an algorithm for discovering sound Stochastic Directed
Action Graphs, a variant of the DFGs often used in commercial process mining appli-
cations. The technique is grounded in grammar inference over sequences of actions, as
recorded in event logs; and uses a bespoke genetic algorithm that ensures fast conver-
gence towards models of practically interesting sizes and accuracy.

GASPD can be used to implement a user-friendly tool for exploring input logs,
with interesting models often uncovered even in the first generation of random param-
eters, and then improved through subsequent generations. Moreover, construction of
multiple such models is easily done in parallel, meaning that as the interesting mod-
els become progressively available, they can be presented to the user via a dynamic
slider interface [29], ordered by size. This conjectured interface can thus present the
so-far discovered Pareto-best models, while generations are extended and new models
are constructed in the background, further feeding the slider. A second slider can be
introduced to navigate over all the computed generations. For instance, selecting a spe-
cific generation in this slider can load all the Pareto optimal models obtained after that
generation in the other slider. Such controls would support interactive exploration of
the improvement in model quality observed through generations.
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The exploration of alternative grammatical inference techniques stands out as a
promising avenue for enhancing the quality of the discovered models. Replacing ALER-
GIA with other grammar inference methods in the genetic framework can reveal their
ultimate effectiveness in generating process models from event logs. ALERGIA ap-
pears as a strong candidate for initiating the quest due to its acknowledged performance
characteristics over a wide variety of real-world languages [17]. Additionally, there
is a prospect for improvement by introducing pruning strategies over prefix acceptor
trees before merging states and redesigning the merging rules. These enhancements can
streamline the algorithm’s convergence process, ensuring more efficient solution space
exploration, resulting in more accurate and concise process models and allowing the
discovery of superior models of larger sizes. Finally, new ideas to guide the genetic
exploration of the parameter space of grammar inference can be explored. Some initial
ideas include using simulated annealing and particle swarm optimization principles to
escape parameter subspaces of local optimal models.

The evaluation in Section 6 made use of entropic relevance and model size to iden-
tify Pareto-optimal models. Entropic relevance ensures models that better describe the
frequencies of log traces are prioritized, and strikes a balance between conventional pre-
cision and recall quality measures in process mining [6]; and model size is a standard
measure of simplicity for DFGs [4]. But other measurement combinations could also
be considered, and would lead to different concrete measurements and, consequently,
might result in different Pareto-optimal models. Nevertheless it seems probable that
measures that assess the same broad phenomena as entropic relevance and size will re-
sult in similar conclusions to those achieved here – that GASPD provides the ability
to realize interesting and useful process models not found by other current approaches,
making it an important development for process mining.
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